Fractional multi-commodity flow problem: Duality and optimality conditions
نویسندگان
چکیده
منابع مشابه
Optimality Conditions and Duality in Minmax Fractional Programming, Part I: Necessary and Sufficient Optimality Conditions
The purpose of this paper is to develop a fairly large number of sets of global parametric sufficient optimality conditions under various generalized (F, b, φ, ρ, θ)univexity assumptions for a continuous minmax fractional programming problem involving arbitrary norms.
متن کاملOptimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملNew Optimality Conditions for a Nondifferentiable Fractional Semipreinvex Programming Problem
In recent years, there has been an increasing interest in studying the develpoment of optimality conditions for nondifferentiable multiobjective programming problems. Many authors established and employed some different Kuhn and Tucker type necessary conditions or other type necessary conditions to research optimal solutions; see [1–27] and references therein. In [7], Lai and Ho used the Pareto...
متن کاملOptimality Conditions for the Linear Fractional/quadratic Bilevel Problem
Bilevel programs are optimization problems which have a subset of their variables constrained to be an optimal solution of another problem parameterized by the remaining variables. They have been applied to decentralized planning problems involving a decision process with a hierarchical structure. This paper considers the linear fractional/quadratic bilevel programming (LFQBP) problem, in which...
متن کاملDuality, Optimality Conditions and Perturbation Analysis
where C is a convex closed cone in the Euclidean space IR, f : IR → IR and G : IR → Y is a mapping from IR into the space Y := S of m × m symmetric matrices. We refer to the above problem as a nonlinear semidefinite programming problem. In particular, if C = IR, the objective function is linear, i.e. f(x) := ∑n i=1 bixi, and the constraint mapping is affine, i.e. G(x) := A0 + ∑n i=1 xiAi where ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 2014
ISSN: 0307-904X
DOI: 10.1016/j.apm.2013.10.032